pyramid uh
Release 0.1.2

October 23, 2016

Contents

1 User Guide 3
1.1 Request Parameters o i i e e e e e e e e e e e e 3
1.2 AddSlash. e 5
1.3 Traversal L e e e e e 6
1.4 Subpath Predicate e 7
1.5 Settings o o o e e e e e 8
1.6 Changelog e 8
2 API Reference 9
2.1 pyramid_duh package e 9
3 Indices and tables 15
Python Module Index 17

pyramid, uh, Release0.1.2

This is just a collection of utilities that I found myself putting into every single pyramid project I made. So now they’re
all in one place.

Code lives here: https://github.com/stevearc/pyramid_duh

Contents 1

https://github.com/stevearc/pyramid_duh

pyramid uh, Release0.1.2

2 Contents

CHAPTER 1

User Guide

1.1 Request Parameters

There are two provided utilities for accessing request parameters. The first is the request .param () method. You
can use this method by including pyramid_duh in your app (which comes with some other things), or if you only
want the param () method you can include pyramid_duh.params:

config.include ('pyramid_duh')

Or in the config file:

pyramid.includes =
pyramid_duh

Here is an example use case:

def register_user (request):
username = request.param('username')
password = request.param('password')
birthdate = request.param('birthdate', type=date)
metadata = request.param('metadata', {}, type=dict)
insert into database

Note that you can pass in default values and perform type conversion. This will handle both form-encoded data and
application/json. If a required argument is missing, it will raise a 400. For greater detail, see the function docs at
param().

1.1.1 Argify

Let’s make the above example sexier:

from pyramid _duh import argify

Qargify (birthdate=date, metadata=dict)
def register_user (request, username, password, birthdate, metadata=None) :
Iinsert into database

Again, pretty intuitive. If any types are non-unicode, specify them in the @argify() decorator. Positional arguments
are required; keyword arguments are optional. It even supports the value validation of request .param():

from pyramid_duh import argify

pyramid uh, Release0.1.2

def is_natural_ number (num) :
return isinstance (num, int) and num > 0

@argify (age=(int, is_natural_number))
def set_age (request, username, age):
Set user age

It also makes unit tests nicer:

def test_my_view(self):
request = DummyRequest ()
ret = my_view(request, 'dsa', 'conspiracytheory', date(1989, 4, 1))

Note: If you’re only using @argify, you don’t need to include pyramid_duh.

1.1.2 Custom Parameter Types

You’re now using argument sugar and you’re loving it. But you’re hungry for more. You want to auto-convert to your
own super-special Unicorn data type. Well who doesn’t?

Here are the POST parameters:

{

username: "stevearc",
pet: |
"name": "Sparklelord",

"sparkly": true,
"cuddly": true

}

And here is the code to parse that mess:

class Unicorn (object):
def _ init_ (self, name, sparkly, cuddly):
self.name = name
self.sparkly = sparkly
self.cuddly = cuddly

@classmethod
def _ from json__ (cls, data):
return cls (x+data)

@argify (pet=Unicorn)
def set_user_pet (request, username, pet):
Set user pet

The __from_json__ method can be a classmethod or a staticmethod, and the signature must be either
(arg) or (request, argqg).

Note: I'm using @argify, but this also works with request .param().

You can also pass in a factory function as the type:

4 Chapter 1. User Guide

pyramid, uh, Release0.1.2

class Unicorn (object):
def _ _init__ (self, name, sparkly, cuddly):
self.name = name
self.sparkly = sparkly
self.cuddly = cuddly

def make_unicorn (data) :
return Unicorn(+x+data)

Qargify (pet=make_unicorn)
def set_user_pet (request, username, pet):
Set user pet

If you’re running into import dependency hell, you can use a dotted path for the type:

@argify (pet="mypkg.models.make_unicorn')
def set_user_pet (request, username, pet):
Set user pet

1.1.3 Multi-Parameter Types

You can define custom types that will consume multiple request parameters. Let’s look at a new set of POST parame-
ters;

{
name: "Sparklelord",
secret: "Radical",

}

Let’s say you want to pass up these parameters as login credentials. You would like to fetch the named Unicorn from
the database and use that in your view. What would you call that argument? unicorn would make sense, but there
aren’t any parameters named unicorn, so how would you inject a parameter that is generated from multiple request
parameters? All you need to do is take your type factory function and decorate it with @argify as well.

@argify
def fetch_unicorn(request, name, secret):
return request.db.query_for_unicorn (name, secret)

@argify (unicorn=fetch_unicorn)
def make_rainbows (request, unicorn):
Make some fukkin' rainbows

You’ll notice here that we’re injecting a field named unicorn, which doesn’t exist in the POST parameters. You can
decorate factory methods or the ___from_json___ magic method on type classes.

This particular functionality is kind of magic, and as such I would not recommend using it frequently because it
obfuscates your code. This was really made with one thing in mind: user authentication. This is a great way to both
authenticate a user and inject the User model into your view with minimal code duplication.

1.2 Add Slash

You have a view. It lies at http://example.com/path/to/resource/. But for some reason people keep
going to http://example.com/path/to/resource. And it messes up relative asset paths. Well, pyramid’s
solution is a little janky. They define a 404 handler that always attempts to add a slash to any view that wasn’t found.
It works, but it’s global and you wouldn’t know about the behavior just from looking at the view callable. So do this:

1.2. Add Slash 5

http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#redirecting-to-slash-appended-routes
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#redirecting-to-slash-appended-routes

pyramid uh, Release0.1.2

from pyramid duh import addslash

@addslash
def my_view (request) :
serve my resource

Easy peasy lemon squeezy.

1.3 Traversal

These are a couple templates for traversal tree nodes that I found myself reusing everywhere.

1.3.1 ISmartLookupResource

This is useful if you have nested resources in your tree, like /user/1234/post/9876. You can have a
UserResource context in your path that has a user attribute, and a PostResource context that has a post
attribute. As long as your final context inherits from ISmartLookupResource, it can access both the user and
the post directly.

@view_config (context=PostResource)
def get_user_post (context, request):
if context.user.is_cool():
return context.post

This is also useful because it means you don’t have to pass the request object down your tree heirarchy. You can just
attach it to the root and your nodes will be able to access it.

1.3.2 IStaticResource

Resource for static paths:

class MyResource (IStaticResource) :
subobjects = {
'foo': foo_factory,
'bar': bar_factory,

}

This does what you think it does. But it prevents you from forgetting to set the __parent___ and __ _name_
attributes on the child. Because that produces terrible and subtle bugs.

1.3.3 IModelResource

Template for retrieving assets from a SQLAlchemy connection. Here’s an example:

class UserResource (IModelResource) :
__model__ = User
_ _modelname__ = 'user'

@view_config (context=UserResource)
def get_user (context, request):
return context.user

This can be customized quite a bit, so look at the docstrings on TModeIResource for more info.

6 Chapter 1. User Guide

pyramid, uh, Release0.1.2

1.3.4 Where is They?

Just import them

’from pyramid_duh import ISmartLookupResource, IStaticResource, IModelResource

1.4 Subpath Predicate

One problem with pyramid’s traversal mechanism is that it doesn’t allow you to set view predicates on the subpath. If
you aren’t already intimately familiar with the details of resource lookup via traversal, here are the docs.

So we’ve got the context, which is the last found resource. The name, which is the first url segment that had no
new context, and then the subpath, which is all path components after the name.

To enforce a subpath matching, pass in a list or tuple as the vew predicate:

@view_config(context=MyCtxt, name='foobar', subpath=())
def my_view (request) :
do things

Assuming that MyCt xt maps to /mything, this view will match /mything/foobar and /mything/foobar/
only. No subpath allowed. Here is the format for matching a single subpath:

@view_config(context=MyCtxt, name='foobar', subpath=('post', 'x"))
def my_view (request) :

id = request.subpath[0]

do things

You can name the subpaths and access them by name:

@view_config(context=MyCtxt, name='foobar', subpath=('post', 'id/*'"))
def my_view (request) :

id = request.named_subpaths['id']

do things

And there are flags you can pass in that allow, among other things, PCRE matching:

@view_config (context=MyCtxt, name='foobar', subpath=('type/ (post|tweet)/r', "id/*'))
def my_view (request) :

item_type = request.named_subpaths|['type']

id = request.named_subpaths['id"']

do things

Check the docs on SubpathPredicate for all of the formats, and match () for details on match flags.

1.4.1 Including

You can use this predicate by including pyramid_duh in your app (which comes with some other things), or if you
only want the predicate you can include pyramid_duh.view:

config.include ('pyramid_ duh')

Or in the config file:

pyramid.includes =
pyramid_duh

1.4. Subpath Predicate 7

https://pyramid.readthedocs.org/en/latest/narr/traversal.html

pyramid uh, Release0.1.2

1.5 Settings

pyramid.settings has all the useful method for converting to non-string data structures. It has asbool,

aslist, ...actually that’s it. We’re missing one.

users =
dsa = conspiracytheory
president_skroob = 12345

def includeme (confiqg):
settings = config.get_settings/()
users = asdict (settings['users'])

Short and sweet.

1.6 Changelog

1.6.1 0.1.2

* Bug fix: Fix potential timezone issue when converting unix time to datetime

1.6.2 0.1.1

* Bug fix: IStaticResource fails to look up self.request if nested 2-deep
* Bug fix: Name collisions with version_helper.py

* Bug fix: Subpath glob matching always respects case

 Feature: @argify works on view classes

 Feature: @argify can inject types that consume multiple parameters

» Feature: Parameter types can be a dotted path

1.6.3 0.1.0

 Package released into the wild

Chapter 1. User Guide

CHAPTER 2

API Reference

2.1 pyramid_duh package

2.1.1 Submodules

pyramid_duh.auth module

Utilities for auth

class pyramid_duh.auth.MixedAuthenticationPolicy (*policies)
Bases: object

Auth policy that is backed by multiple other auth policies

Checks authentication against each contained policy in order. The first one to return a non-None userid is used.
Principals are merged.

add_policy (policy)
Add another authentication policy

authenticated_userid (request)
Return the authenticated userid or None if no authenticated userid can be found. This method of the policy
should ensure that a record exists in whatever persistent store is used related to the user (the user should
not have been deleted); if a record associated with the current id does not exist in a persistent store, it
should return None.

effective_principals (request)
Return a sequence representing the effective principals including the userid and any groups belonged
to by the current user, including ‘system’ groups such as pyramid.security.Everyone and
pyramid.security.Authenticated.

forget (request)
Return a set of headers suitable for ‘forgetting’ the current user on subsequent requests.

remember (request, principal, **kw)
Return a set of headers suitable for ‘remembering’ the principal named principal when set in a re-
sponse. An individual authentication policy and its consumers can decide on the composition and meaning
of **kw.

unauthenticated_userid (request)
Return the unauthenticated userid. This method performs the same duty as authenticated_userid
but is permitted to return the userid based only on data present in the request; it needn’t (and shouldn’t)
check any persistent store to ensure that the user record related to the request userid exists.

http://docs.python.org/library/functions.html#object

pyramid uh, Release0.1.2

pyramid_duh.auth.includeme (config)
Configure the app

pyramid_duh.compat module
pyramid_duh.params module

Utilities for request parameters

pyramid_duh.params.argify (*args, **type_kwargs)
Request decorator for automagically passing in request parameters.

Notes

Here is a sample use case:

@argify (foo=dict, ts=datetime)
def handle_request (request, foo, ts, bar='baz'):
do request handling

No special type is required for strings:

Qargify
def handle_request (request, foo, bar='baz'):
do request handling (both 'foo' and 'bar' are strings)

If any positional arguments are missing, it will raise a HTTPBadRequest exception. If any keyword arguments

are missing, it will simply use whatever the default value is.

Note that unit tests should be unaffected by this decorator. This is valid:

Qargify
def myview (request, wvarl, var2='foo'):
return 'bar'

class TestReqg(unittest.TestCase):
def test_my_request (self):
request = pyramid.testing.DummyRequest ()
retval = myview (request, 5, var2='foobar')
self.assertEqual (retval, 'bar'")

pyramid_duh.params.includeme (config)
Add parameter utilities

pyramid_duh.params.is_request (0bj)
Check if an object looks like a request

pyramid_duh.params.param (request, name, default=<object object>, type=None, validate=None)
Access a parameter and perform type conversion.

Parameters request : Request
name : str
The name of the parameter to retrieve
default : object, optional

The default value to use if none is found

10 Chapter 2. API Reference

pyramid, uh, Release0.1.2

type : object, optional

The type to convert the argument to. All python primitives are supported, as well as
date and datetime. You may also pass in a factory function or an object that has a
static___from_json___ method.

validate : callable, optional
Callable test to validate parameter value
Returns arg : object
Raises exc: HTTPBadRequest

If a parameter is requested that does not exist and no default was provided

pyramid_duh.route module

Utilities for traversal

class pyramid_duh.route.IModelResource (model=None)
Bases: pyramid_duh.route.ISmartLookupResource

Resource base class for wrapping models in a sqlalchemy database

Notes

Requires any parent node to set the ‘request’ attribute

create_model (name)
Override this if you wish to allow ‘PUT’ request to create a model

db
Access the SQLAlchemy session on the request

Override this if your session is named something other than ‘db’

get_model (name)
Retrieve a model from the database

Override this for custom queries

class pyramid_duh.route.ISmartLookupResource
Bases: object

Resource base class that allows hierarchical lookup of attributes
Potential use case: /user/1234/post/5678

At the /user/1234 point in traversal you can set a ‘user’ attribute on the resource. At the ‘post/5678’ point in
traversal you can set a ‘post’ attribute on that resource. Then the request can access both of them from the
context directly:

def get_user_post (context, request):
user = context.user
if user.is_cool():
return context.post

class pyramid_duh.route.IStaticResource
Bases: pyramid_duh.route.ISmartLookupResource

Simple resource base class for static-mapping of paths

2.1. pyramid_duh package 11

http://docs.python.org/library/functions.html#object

pyramid uh, Release0.1.2

subobjects = {}

pyramid_duh.settings module

Utilities for parsing settings

pyramid_duh.settings.asdict (setting, value_type=<function <lambda>>)
Parses config values from .ini file and returns a dictionary

Parameters setting : str
The setting from the config.ini file
value_type : callable
Run this function on the values of the dict

Returns data : dict

pyramid_duh.view module

Utilities for view configuration

class pyramid_duh.view.SubpathPredicate (paths, config)
Bases: object

Generate a custom predicate that matches subpaths
Parameters *paths : list

List of match specs.

Notes

A match spec may take one of three forms:

'glob'
'name/glob'
'name/glob/flags"’

The name is optional, but if you wish to specify flags then you have to include the leading slash:

A match spec with flags and no name
'/foo.x/x"

The names will be accessible from the request . named_subpaths attribute.

@view_config (context=Root, name='simple', subpath=('package/x', 'version/*/?"'))
def simple (request)

pkg = request.named_subpaths|['package']

version = request.named_subpaths.get ('version')

request.response.body = '<hl>%s</hl>' % package

if version is not None:

request .response.body += '<h4>version: </h4>' % version
return request.response

See match () for more information on match flags*

phash ()
Display name

12 Chapter 2. API Reference

http://docs.python.org/library/functions.html#object

pyramid, uh, Release0.1.2

text ()
Display name

pyramid_duh.view.addslash (fxn)
View decorator that adds a trailing slash

Notes

Usage:

@view_config (context=MyCtxt, renderer='json')
@addslash
def do_view (request) :

return 'cool data'

pyramid_duh.view.includeme (config)
Add the custom view predicates

pyramid_duh.view.match (pattern, path, flags)
Check if a pattern matches a path

Parameters pattern : str
Glob or PCRE
path : str or None
The path to check, or None if no path
flags : {‘r’, 1, ‘a’, 7’}

Special match flags. These may be combined (e.g. ‘ri?’). See the notes for an explana-
tion of the different values.

Returns match : bool or SRE_Match

A boolean indicating the match status, or the regex match object if there was a successful
PCRE match.

Notes

Flag | Description

r Match using PCRE (default glob)

Case-insensitive match (must be used with ‘r’)
ASClII-only match (must be used with ‘r’, python 3 only)
Path is optional (return True if path is None)

ol e | =

2.1.2 Module contents

pyramid_duh

pyramid_duh.includeme (config)
Add request methods

2.1. pyramid_duh package 13

pyramid uh, Release0.1.2

14 Chapter 2. API Reference

CHAPTER 3

Indices and tables

¢ genindex
* modindex

e search

15

pyramid uh, Release0.1.2

16 Chapter 3. Indices and tables

Python Module Index

P

pyramid_dubh,
pyramid_duh.
pyramid_duh.
.route, 11
pyramid_duh.
.view, 12

pyramid_duh

pyramid_duh

13
auth, 9
params, 10

settings, 12

17

pyramid uh, Release0.1.2

18 Python Module Index

Index

A

M

add_policy() (pyramid_duh.auth.MixedAuthenticationPolicymatch() (in module pyramid_duh.view), 13

method), 9

addslash() (in module pyramid_duh.view), 13

argify() (in module pyramid_duh.params), 10

asdict() (in module pyramid_duh.settings), 12

authenticated_userid() (pyra-
mid_duh.auth.MixedAuthenticationPolicy
method), 9

C

create_model() (pyramid_duh.route.IModelResource
method), 11

D

db (pyramid_duh.route.IModelResource attribute), 11

E

effective_principals() (pyra-
mid_duh.auth.MixedAuthenticationPolicy
method), 9

F

forget() (pyramid_duh.auth.MixedAuthenticationPolicy
method), 9

G

get_model() (pyramid_duh.route.IModelResource
method), 11

IModelResource (class in pyramid_duh.route), 11
includeme() (in module pyramid_duh), 13

includeme() (in module pyramid_duh.auth), 9
includeme() (in module pyramid_duh.params), 10
includeme() (in module pyramid_duh.view), 13
is_request() (in module pyramid_duh.params), 10
ISmartLookupResource (class in pyramid_duh.route), 11
IStaticResource (class in pyramid_duh.route), 11

MixedAuthenticationPolicy (class in pyramid_duh.auth),
9

P

param() (in module pyramid_duh.params), 10

phash() (pyramid_duh.view.SubpathPredicate method),
12

pyramid_duh (module), 13

pyramid_duh.auth (module), 9

pyramid_duh.params (module), 10

pyramid_duh.route (module), 11

pyramid_duh.settings (module), 12

pyramid_duh.view (module), 12

R

remember() (pyramid_duh.auth.Mixed AuthenticationPolicy
method), 9

S

subobjects (pyramid_duh.route.IStaticResource at-
tribute), 11
SubpathPredicate (class in pyramid_duh.view), 12

T

text() (pyramid_duh.view.SubpathPredicate method), 12

U

unauthenticated_userid() (pyra-
mid_duh.auth.MixedAuthenticationPolicy
method), 9

19

	User Guide
	Request Parameters
	Add Slash
	Traversal
	Subpath Predicate
	Settings
	Changelog

	API Reference
	pyramid_duh package

	Indices and tables
	Python Module Index

